1,645 research outputs found

    Brain tumor segmentation with missing modalities via latent multi-source correlation representation

    Full text link
    Multimodal MR images can provide complementary information for accurate brain tumor segmentation. However, it's common to have missing imaging modalities in clinical practice. Since there exists a strong correlation between multi modalities, a novel correlation representation block is proposed to specially discover the latent multi-source correlation. Thanks to the obtained correlation representation, the segmentation becomes more robust in the case of missing modalities. The model parameter estimation module first maps the individual representation produced by each encoder to obtain independent parameters, then, under these parameters, the correlation expression module transforms all the individual representations to form a latent multi-source correlation representation. Finally, the correlation representations across modalities are fused via the attention mechanism into a shared representation to emphasize the most important features for segmentation. We evaluate our model on BraTS 2018 datasets, it outperforms the current state-of-the-art method and produces robust results when one or more modalities are missing.Comment: 9 pages, 6 figures, accepted by MICCAI 202

    Evidence fusion with contextual discounting for multi-modality medical image segmentation

    Full text link
    As information sources are usually imperfect, it is necessary to take into account their reliability in multi-source information fusion tasks. In this paper, we propose a new deep framework allowing us to merge multi-MR image segmentation results using the formalism of Dempster-Shafer theory while taking into account the reliability of different modalities relative to different classes. The framework is composed of an encoder-decoder feature extraction module, an evidential segmentation module that computes a belief function at each voxel for each modality, and a multi-modality evidence fusion module, which assigns a vector of discount rates to each modality evidence and combines the discounted evidence using Dempster's rule. The whole framework is trained by minimizing a new loss function based on a discounted Dice index to increase segmentation accuracy and reliability. The method was evaluated on the BraTs 2021 database of 1251 patients with brain tumors. Quantitative and qualitative results show that our method outperforms the state of the art, and implements an effective new idea for merging multi-information within deep neural networks.Comment: MICCAI202

    On some interconnections between combinatorial optimization and extremal graph theory

    Get PDF
    The uniting feature of combinatorial optimization and extremal graph theory is that in both areas one should find extrema of a function defined in most cases on a finite set. While in combinatorial optimization the point is in developing efficient algorithms and heuristics for solving specified types of problems, the extremal graph theory deals with finding bounds for various graph invariants under some constraints and with constructing extremal graphs. We analyze by examples some interconnections and interactions of the two theories and propose some conclusions

    First-order multi-k phase transitions and magnetoelectric effects in multiferroic Co3TeO6

    Full text link
    A theoretical description of the sequence of magnetic phases in Co3TeO6 is presented. The strongly first-order character of the transition to the commensurate multiferroic ground state, induced by coupled order parameters corresponding to different wavevectors, is related to a large magnetoelastic effect with an exchange energy critically sensitive to the interatomic spacing. The monoclinic magnetic symmetry C2' of the multiferroic phase permits spontaneous polarization and magnetization as well as the linear magnetoelectric effect. The existence of weakly ferromagnetic domains is verified experimentally by second harmonic generation measurements

    Limits of life and the habitability of Mars: The ESA space experiment BIOMEX on the ISS

    Get PDF
    BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports—among others—the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit

    BIOMEX (Biology and Mars Experiment): Preliminary results on Antarctic black cryptoendolithic fungi in ground based experiments

    Get PDF
    The main goal for astrobiologists is to find traces of present or past life in extraterrestrial environment or in meteorites. Biomolecules, such as lipids, pigments or polysaccharides, may be useful to establish the presence of extant or extinct life (Simoneit, B et al., 1998). BIOMEX (Biology and Mars Experiment) aims to measure to what extent biomolecules, such as pigments and cellular components, preserve their stability under space and Mars-like conditions. The experiment has just been launched in the space and will be exposed on EXPOSE-R payload to the outside of the International Space Station (ISS) for about 2 years. Among a number of extremophilic microorganisms tested, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 was included in the experiment. The fungus, living in the airspaces of porous rocks, was already chosen in previous astrobiological investigation for studying the interplanetary transfer of life via meteorites. In that context, the fungus survived 18 months of exposure outside of the ISS (Onofri al., 2012); for all these reasons it is considered an optimal eukaryotic model for astrobiological exploration. Before launch dried samples were exposed, in ground based experiments, to extreme conditions, including vacuum, irradiation and temperature cycles.Upon sample re-hydration and survival analysis, including colony forming ability, Propidium MonoAzide (PMA) assay-coupled quantitative PCR (Mohapatra and La Duc, 2012) all the test systems survived, neither any DNA damage was detectable. Our analyses focused also on mineral-microorganisms interactions and stability/degradation of typical fungal macromolecules, in particular melanin, when exposed to space and simulated Martian conditions, contributing to the development of libraries of biosignatures in rocks, supporting future exploration missions

    Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during themorning stabilized by the CO2 atmosphere for a few hours. The protecting biofilmof N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions.However, the salinity level, although unfavourable for the host organism,might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.BMWi, 50WB1151, Untersuchungen zum Überleben und zur Aktivität von Eisenbakterien unter Mars-ähnlichen Bedingungen auf der ISS und im Labo

    WIYN Open Cluster Study. II. UBVRI CCD Photometry of the Open Cluster NGC 188

    Get PDF
    We present high-precision UBVRI CCD photometry of the old open cluster NGC 188. Our color-magnitude diagram extends from near the red giant branch tip to as faint as ~5 mag below the main-sequence turnoff. From an analysis of these data along with published photometry for M67, we draw the following conclusions: (1) From the UBV two-color diagram, we find a reddening of E(B ̶ V) = 0.04 ± 0.02 for M67 and E(B ̶ V) = 0.09 ± 0.02 for NGC 188. (2) Based on main-sequence fitting to solar abundance isochrones, the distance moduli turn out to be (m - M)v = 9.69 ± 0.11 for M67 and (m - M)v = 11.44 ± 0.08 for NGC 188. (3) The comparison of the CMDs to theoretical isochrones indicates that an amount of core convective overshoot equivalent to 0.10 of a pressure scale height is appropriate for M67, while no overshoot is required to fit the CMD of NGC 188. These isochrones suggest that NGC 188 is 3.0 ± 0.7 Gyr older than M67. (4) There is a clear indication of mass segregation in both M67 and NGC 188, with the most massive stars (M/M⊙ \u3e 1.1) being more centrally concentrated than those that are the least massive (0.8 ≥ M/M⊙ \u3e 0.65)

    Quantitative Investigations of Polygonal Patterned Ground in Continental Antarctica: A Mars analogue

    Get PDF
    Polygonal fractured ground is widespread at middle and high latitudes on Mars. The latitude-dependence and the morphologic similarity to terrestrial patterned ground in permafrost regions may indicate a formation as thermal contraction cracks, but the exact formation mechanisms are still unclear. This study quantitatively investigates polygonal networks in icefree parts of continental Antarctica to help distinguishing between different hypotheses of their origin on Mars
    • …
    corecore